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Editor's Foreword

Previous drafts of this standard have been discussed in WG11 meetings during 1995 and

1996, and the Working Draft was circulated to SC7 member bodies in February 1997.

This draft incorporates comments from the WG11 meeting in Walnut Creek in June 1997

which considered member body comments and those of Petri net experts in the wider

community. This document is being circulated as a �rst CD to SC7 member bodies for

comment and vote. The next meeting of WG11 will be in London, 3-7 November 1997.

Although the deadline for the ballot will be after this meeting, it would be valuable to

obtain comments from member bodies before the meeting if at all possible. It would

therefore be appreciated if comments could be forwarded to the editor by 20 October

1997.

National Bodies should send comments to the SC7 secretariat by email to sc7@QC.Bell.ca.

WG11 experts may send their comments to the WG11 secretary, Mr Tony Williamson,

at WILLIAMSONJA%AM5@mr.nawcad.navy.mil. It would be appreciated if these com-

ments could also be copied to the editor, Jonathan Billington, at j.billington@unisa.edu.au.

In formulating their vote, member bodies may wish to consider the symbols being used

in the de�nition (clause 7). Currently the standard has used the symbol S for the set of

places in a high-level net. This is because it originally came from the German stellen.

Several countries would prefer to use P for the set of places, as it is more suggestive in a

standard written in English. If P was used, this would allow S to be used for the set of

Sorts (instead of R currently). The symbol F is used for the set of arcs, as historically,

it has been called the ow relation. The use of A for the set of arcs is more suggestive.

The symbol C is used for the Typing function as historically it was called the 'Colour'

function. It would be more suggestive to use Type instead. The greek letter Sigma has

been used for signatures, but it is also used for summation. Replacing Sigma by Sig for a

signature, would avoid this overloading. A greek letter (omega) has been used for the set

of operators, and use of O is probably preferred. The use of f for functions is probably

better than what is currently used (an italic w subscripted by H). F can be used for the
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set of functions. Script C is used to denote a set of Types, because historically it was a

set of colour sets. It may be more suggestive to use Dom or D for a set of domains.

Jonathan Billington

Editor Project 1.7.19.3 Petri nets

Email: j.billington@unisa.edu.au
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0 Introduction

Software is an increasingly important component of many large scale systems that will

be developed as we mature as a global society in the information age. Currently the

development of software as an engineering discipline is in its infancy. Techniques for

improving software quality and reliability are thus being sought by governments and

industry.

This International Standard aims to improve this situation by providing a well de�ned

graphical technique for the speci�cation and analysis of systems. The technique, High-

level Petri nets, is mathematically de�ned, and may thus be used to provide unambiguous

speci�cations and descriptions of applications. It is also an executable technique, allowing

speci�cation prototypes to be developed to test ideas at the earliest and cheapest oppor-

tunity. Speci�cations written in the technique may be subjected to analysis methods to

prove properties about the speci�cations, before implementation commences, thus saving

on testing and maintenance time.

The technique promises to have multiple uses. For example it may be used to de�ne the

semantics of data ow diagrams or directly to specify systems. The technique is particu-

larly suited to parallel and distributed systems development as it supports concurrency.

This standard may be cited in contracts for the supply of software services, or used by

application developers or Petri net tool vendors or users.

This International Standard provides an abstract mathematical syntax and a formal se-

mantics for the technique. Conformance to the standard will be possible if a mathematical

mapping is provided from the conformant technique to the standard technique, and the

standard's semantics are adopted.

Clause 1 describes the scope, areas of application and the intended audience of this Inter-

national Standard. Clause 2 provides normative references (none at present), while clause

3 provides a glossary of terms and de�nes abbreviations. The main mathematical appara-

tus required for de�ning the standard is developed in clause 4. The basic semantic model

for High-level Petri Nets is given in clause 5, while the main concepts behind the graphi-

cal form are informally introduced in clause 6. Clause 7 de�nes the High-level Petri Net

Graph, the form of the standard intended for industrial use. Clause 8 further describes

syntactical conventions. Clause 9 relates the graphical form to the basic semantic model.

The conformance clause is given in clause 10. Several informative annexes are provided:

Annex A is a tutorial on the High-level Petri Net Graph; Annex B (not written yet) de-

�nes certain net classes as restrictions of the de�nition of Clause 7; and Annex C provides

pointers to analysis techniques for High-level Petri Nets. A bibliography concludes the

standard.
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1 Scope

1.1 Intent

This International Standard de�nes a Petri net technique, called High-level Petri nets,

including its syntax and semantics. It provides a reference de�nition that can be used both

within and between organisations, to ensure a common understanding of: the technique;

and the speci�cations written using the technique. The standard may be mandated

in contracts for writing speci�cations, thereby facilitating international enterprize and

trade. The standard will also facilitate the development and interoperability of Petri net

computer support tools.

This International Standard, de�nes a mathematical semantic model, an abstract math-

ematical syntax and a graphical notation for High-level Petri nets.

This International Standard does not provide a concrete syntax nor a transfer syntax

and it does not address techniques for modularity (such as hierarchies), augmentation of

high-level Petri nets with time, and methods for analysis which may become the subject

of future standardisation e�orts.

1.2 Field of Application

This International Standard is applicable to a wide variety of concurrent discrete event

systems and in particular distributed systems. Generic �elds of application include:

� Requirements analysis;

� Development of speci�cations, designs and test suites;

� Descriptions of existing systems prior to re-engineering;

� Modelling business and software processes;

� Providing the semantics for concurrent languages;

� Simulation of systems to increase con�dence;

� Formal analysis of the behaviour critical systems; and

� Development of Petri net support tools

The standard may be applied to a broad range of systems, including information systems,

operating systems, databases, communication protocols, computer hardware architec-

tures, security systems, manufacturing systems, defence command and control, business

processes, banking systems, chemical processes, nuclear waste systems and telecommuni-

cations.
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1.3 Audience

The standard is written as a reference for systems analysts, designers, developers, main-

tainers and procurers, and for Petri net tool developers and standards developers.

2 Normative References

None currently.

Editor's note 1: There was a suggestion to reference CD ISO/IEC 14481 Information

Technology - Conceptual Schema Modelling Facilities (CSMF), in this clause. Unfortu-

nately, as far as I understand it, the most useful part of CSMF is Annex D, Mathematical

Conventions and Notation, which is informative, not normative. Hence referencing CSMF

as Normative is not appropriate, but it could be included in the references in the bib-

liography (although text books (such as Truss) on discrete mathematics may be more

suitable).

3 Glossary of Terms and Abbreviations

3.1 Glossary

Note: For notions of basic set theory including sets, functions, relations and � expressions,

see the book by Truss in the Bibliography.

Algebra: A mathematical structure comprising a set of sets, and a set of functions taking

these sets as domains and co-domains.

Many-sorted Algebra: An Algebra in which the cardinality of the set of sets is greater

than one.

Arc: A directed edge of a net which may connect a place to a transition or a transition

to a place. Normally represented by an arrow.

Input Arc (of a transition): An arc directed from a place to the transition.

Output Arc (of a transition): An arc directed from the transition to a place.

Arc annotation: An expression that may involve constants, variables and operators

used to annotate an arc of a net. The expression must evaluate (on variable substitution)

to be a multiset over the type of the arc's associated place.

Arity: The input sorts and output sort for an operator.

Assignment: For a set of variables, the association of a value (of correct type) to each

variable.

Basis set: The set of objects used to create a multiset.

Binding: see assignment

Carrier: A set of a many-sorted algebra.
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Declarations: A set of statements which de�ne the sets, constants, parameter values,

typed variables and functions required for de�ning the inscriptions on a high-level net

graph.

Enabling (a transition): A transition is enabled in a particular mode and net marking,

when the following conditions are met:

The marking of each input place of the transition satis�es the demand placed on it by

its arc expression evaluated for the particular transition mode. (The arc expression must

evaluate to a multiset of tokens of the same type or subtype as the place.) The demand

is satis�ed when the place's marking contains (at least) the multiset of tokens indicated

by the evaluated arc expression.

Remark: The determination of transition modes guarantees that the Transition Condition

is satis�ed (see Transition Mode).

High-level Net (High-level Petri Net): A algebraic structure comprising: a set of

places; a set of transitions; a set of types; a function associating types to places, and modes

(types) to transitions; Pre function determining token demands (multisets of tokens) on

places for each transition mode; Post function determining output tokens (multisets of

tokens) for places for each transition mode; and an initial marking.

High-level Petri Net Graph: A net graph and its associated annotations comprising

Place Types, Arc Annotations, Transition Conditions, and their corresponding de�nitions

in a set of Declarations, and an Initial Marking of the net.

Marking (of a net): The set of the place markings for all places of the net.

Initial Marking (of the net): The set of initial place markings given with the high-level

net de�nition.

Initial Marking of a Place: A special marking of a place, de�ned with the high-level

net.

Marking of a place: A multiset of tokens associated with (`residing in') the place.

Reachable Marking: Any marking of the net that can be reached from the initial

marking by the occurrence of transitions.

Reachability Set: The set of reachable markings of the net, including the initial marking.

Multiset: A collection of objects where (meaningful) repetition of objects is allowed.

Multiset cardinality: The cardinality of a multiset, is the sum of the multiplicities of

each of the members of the multiset.

Net graph: A directed graph comprising a set of nodes of two di�erent kinds, called

places and transitions, and their interconnection by directed edges, such that only places

can be connected to transitions, and transitions to places, but never transitions to tran-

sitions, nor places to places.

Node (of a net): A vertex of the net graph.

Operator: A symbol representing the name of a function.

Parameter: A constant that can take a range of values de�ned by a set.
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Parameterized High-level Net Graph: A high-level net graph that contains param-

eters in its de�nition.

Place: A node of a net, taken from the place kind, normally represented by an ellipse in

the net graph. A place is typed.

Input Place (of a transition): A place connected to the transition by an input arc.

Output Place (of a transition): A place connected to the transition by an output arc.

Place Type: A non-empty set of data items associated with a place. (This set can

describe an arbitrarily complex data structure.)

Reachability Graph: A directed graph of nodes and edges, where the nodes correspond

to reachable markings, and the edges correspond to transition occurrences.

Signature: An algebraic Structure comprising a set of sorts and a set of operators.

Boolean signature: A signature where one of the sorts is Boolean.

Many-sorted signature: A signature where the set of sorts has a cardinality greater

than one.

Natural signature: A signature where one of the sorts corresponds to the Natural

numbers.

Signature with Variables: A signature that includes a set of variable names, as well

as the set of sorts and the set of operators.

Sort: A symbol representing the name of a set.

Argument sort: The sort of an argument of an operator.

Input sort: the same an argument sort

Output sort: The sort of an output of an operator.

Range sort: the same as an output sort

Term: An expression built from a signature and comprising constants variables and

operators.

Closed term: A term comprising constants and operators but no variables.

Term evaluation: The result obtained after the binding of variables in the term, the

computation of the results of the associated functions, and their reduction to simplest

form.

Token: A data item associated with a place and chosen from the place's type.

Transition: A node of a net, taken from the transition kind, normally represented by a

rectangle in the net graph.

Transition Condition: A boolean expression (one that evaluates to true or false) asso-

ciated with a transition.

Transition Mode: an assignment of values to the transition's variables that satis�es the

transition condition.
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Transition occurrence (Transition rule): If a transition is enabled in a mode, it

may occur in that mode. On the occurrence of the transition, the following actions occur

indivisibly:

1. For each input place of the transition: the enabling tokens of the input arc with respect

to that mode are subtracted from the input place's marking, and

2. For each output place of the transition: the multiset of tokens of the evaluated output

arc expression is added to the marking of the output place.

Remark: A place may be both an input place and an output place of the same transition.

Transition Variables: All the variables that occur in the expressions associated with the

transition. These are the transition condition, and the annotations of arcs surrounding

the transition.

3.2 Abbreviations

HLPN: High-level Petri Net

HLPNG: High-level Petri Net Graph

4 Conventions and Notation

This clause de�nes the mathematical conventions required for the de�nition of High-level

Petri nets.

4.1 Sets

� N = f0; 1; : : :g the natural numbers.

� Z = f: : : ;�1; 0; 1; : : :g the integers.

� Boolean = ftrue; falseg

4.2 Multisets

A multiset, B, (also known as a bag) over a non-empty basis set, A, is the function

B : A �! N

which associates a multiplicity, possibly zero, with each of the basis elements. The mul-

tiplicity of a 2 A in B, is given by B(a). A set is a special case of a multiset, where the

multiplicity of each of the basis elements is either zero or one.

The set of multisets over A is denoted by �A.
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4.2.1 Sum representation

A multiset may be represented as a symbolic sum of basis elements scaled by their mul-

tiplicities (sometimes known as co-e�cients).

B =
X

a2A

B(a)a

If A is the set of rational numbers, then parentheses are used to separate the multiplicity

B(a) from the basis element a. If B(a) = 1, then it may be omitted and just a used in

the sum.

4.2.2 Membership

Given a multiset, B 2 �A, a 2 A is a member of B, denoted a 2 B, if B(a) > 0, and

conversely if B(a) = 0, then a 62 B.

4.2.3 Empty multiset

The empty multiset, ;, has no members: 8a 2 A, ;(a) = 0.

4.2.4 Cardinality and Finite Multiset

Multiset cardinality is de�ned in the following way. The cardinality jBj of a multiset B,

is the sum of the multiplicities of each of the members of the multiset.

jBj =
X

a2A

B(a)

when jBj is �nite, the multiset is called a �nite multiset.

4.2.5 Multiset Equality and Comparison

Two multisets, B1; B2 2 �A, are equal, B1 = B2, i� 8a 2 A, B1(a) = B2(a).

B1 is less than or equal to (or contained in) B2, B1 � B2, i� 8a 2 A, B1(a) � B2(a).

4.2.6 Multiset Operations

Addition and subtraction operations on multisets, B1; B2 2 �A, are de�ned as follows:

B = B1 +B2 i� 8a 2 A B(a) = B1(a) +B2(a)

B = B1� B2 i� 8a 2 A (B1(a) � B2(a)) ^ (B(a) = B1(a)� B2(a))

Scalar multiplication of a multiset, B1 2 �A, by a natural number, n 2 N , is de�ned as

B = nB1 i� 8a 2 A;B(a) = n� B1(a)

where � is arithmetic multiplication.
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4.3 Concepts from Algebraic Speci�cation

Editor's note 2: This clause does not as yet take into account the technical comments

provided by Germany in the subdivision vote, due to word processing incompatibilities.

However, it is believed that the current text is adequate as it stands.

In order to de�ne the HLPN-graph we need concepts from algebraic speci�cation. In

the HLPN-graph, we shall inscribe arcs with multisets of terms involving variables, and

transitions with Boolean expressions. Many-sorted signatures provide an appropriate

mathematical framework for this representation. Signatures provide a convenient way to

characterise many-sorted algebras at a syntactic level. This clause introduces the concepts

of signatures, terms and many-sorted algebras that will be required for the de�nition of

the HLPN-graph.

4.3.1 Signatures

Editor's Note 3: There is a suggestion to merge this and the next subclause, to form a

new subclause entitled Signatures with Variables, to remove redundancy.

A many-sorted (or R-sorted) signature, �, is a pair:

� = (R;
)

where

� R is a set of sorts (the names of sets, e.g. Int for the integers); and

� 
 is a set of operators (the names of functions) together with their arity in R which

speci�es the names of the domain and co-domain of each of the operators.

The arity is a function from the set of operator names to R� � R, where R� is the set

of �nite sequences, including the empty string, ", over R. Thus every operator in 
 is

indexed by a pair (�; r), � 2 R� and r 2 R denoted by w(�;r). � 2 R� is known as the

input or argument sorts, and r as the output or range sort of operator w. (The sequence

of input sorts will de�ne a cartesian product as the domain of the function corresponding

to the operator and the output sort will de�ne its co-domain - but this is jumping ahead

to the many-sorted algebra.)

For example, if R = fInt; Boolg, then w(Int:Int;Bool) would represent a binary predicate

symbol, such as equality (=) or less than (<). Using a standard convention, the sort of

a constant may be declared by letting � = ". For example an integer constant would be

denoted by w(";Int) or simply wInt.

The sort of a variable may also be declared in the same way. This leads to the consideration

of signatures with variables.

4.3.2 Signatures with Variables

A many-sorted signature with variables is the triple:

� = (R;
; V )
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where R is a set of sorts, 
 a set of operators with associated arity as before and V is

a set of sorted variables, known as an R-sorted set of variables. It is assumed that R, 


and V are disjoint. The sort of the variable is de�ned by the arity function, in a similar

way to that of constants, from the set of variable names to f"g � R. A variable in V of

sort r 2 R would be denoted by v(";r) or more simply by vr. For example, if Int 2 R,

then an integer variable would be v(";Int) or vInt.

V may be partitioned according to sorts, where Vr denotes the set of variables of sort r

(i.e. va 2 Vr i� a = r).

4.3.3 Natural and Boolean Signatures

The term Boolean Signature is used to mean a many-sorted signature where one of the

sorts is Boolean. Similarly, the term Natural Signature is used when one of the sorts

corresponds to the Naturals (N).

4.3.4 Terms of a Signature with Variables

Terms of sort r 2 R may be built from a signature � = (R;
; V ) in the following way.

We denote a term, e, of sort r by e : r and the set of terms of sort r by TERM(
 [ V )r,

and generate them inductively as follows. For r; r1; : : : ; rn 2 R (n > 0)

1. For all w(";r) 2 
, w(";r) 2 TERM(
 [ V )r;

2. Vr � TERM(
 [ V )r; and

3. If e1 : r1; : : : ; en : rn are terms and w(r1:::rn;r) 2 
, is an operator, then w(r1:::rn;r)(e1; : : : ; en) 2

TERM(
 [ V )r

Thus if Int is a sort, integer constants and variables, and operators (with appropriate

arguments) of output sort Int are terms of sort Int.

We denote the set of all terms of a signature with variables by TERM(
[V ), the set of all

closed terms (those not containing variables, also known as ground terms) by TERM(
).

Thus

TERM(
 [ V ) =
[

r2R

TERM(
 [ V )r

4.3.5 Multisets of Terms

Multisets or bags of terms can also be built inductively from the signature if we assume

that we have a Natural signature. We de�ne multisets of terms this way to allow the

multiplicities to be terms of sort Nat, rather than just the Naturals themselves. (This

allows, for example, the introduction of conditions into arc expressions.)

Let BTERM(
 [ V ) denote the set of multisets of terms, de�ned inductively as follows.

� TERM(
 [ V ) � BTERM(
 [ V );
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� if b1; b2 2 BTERM(
 [ V ), then (b1 + b2) 2 BTERM(
 [ V ); and

� if i 2 TERM(
 [ V )Nat and b 2 BTERM(
 [ V ), then i� b 2 BTERM(
 [ V )

where `�' represents scalar multiplication.

Where there is no confusion the `�' will be dropped and juxtaposition will be used for

scalar multiplication (e.g. `3� x can be replaced by 3x and 4� 3� x by 4� 3x which is

distinctly di�erent from 43x). When the multiplicity of a term is one (eg 1x) we drop the

one, so that 1x is represented by x. Likewise we interpret any term that does not have a

multiplicity to have a multiplicity of one.

4.3.6 Many-sorted Algebras

A many-sorted algebra, (or �-Algebra), H, provides an interpretation (meaning) for the

signature �. For every sort, r 2 R, there is a corresponding set, Hr, known as a carrier

and for every operator w(r1:::rn;r) 2 
, there is a corresponding function

wH : Hr1 � : : :�Hrn ! Hr:

In case an operator is a constant, wr, then there is a corresponding element wH 2 Hr.

They may be considered as functions of arity zero.

De�nition: A many-sorted Algebra, H, is a pair

H = (RH ;
H)

where RH = fHrjr 2 Rg is the set of carriers, with for all r 2 R;Hr 6= ; and

H = fwH jw�;r 2 
; � 2 R�and r 2 Rg the set of corresponding functions.

For example, if � = (fInt; Boolg; f<(Int:Int;Bool)g) then a corresponding many-sorted al-

gebra would be

H = (Z;Boolean; lessthan)

where Z is the set of integers: f: : : ;�1; 0; 1; : : :g

Boolean = ftrue; falseg

and lessthan : Z � Z ! Boolean is the usual integer comparison function.

It could also be

B = (N;Boolean; lessthan)

where N is the set of non-negative integers: f0; 1; : : :g

Boolean = ftrue; falseg
and lessthan : N �N ! Boolean.

For signatures with variables, variables are R-sorted. In the algebra, the variable is typed

by the carrier corresponding to the sort.
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4.3.7 Assignment and Evaluation

Given an R-sorted algebra, H, with variables in V , an assignment 1 for H and V is a set

of functions �, comprising an assignment function for each sort r 2 R,

�r : Vr ! Hr:

This function may be extended to terms by considering the family of functions assign

comprising

assignr : TERM(
 [ V )r ! Hr

for each sort r 2 R. The values are determined inductively as follows. For � 2 R� n f"g,

� = r1r2 : : : rn, with r; r1; : : : ; rn 2 R and e; e1; : : : ; en 2 TERM(
 [ V ),

� If e 2 Vr is a variable, then assignr(e) = �r(e)

� For a constant, wr 2 
, assignr(wr) = wH 2 Hr.

� If e = w(�;r)(e1; : : : ; en), then

assignr(e) = wH(assignr1(e1); : : : ; assignrn(en)) 2 Hr, where e1 : r1 : : : en : rn.

Knowing the values of terms we can determine the value of multisets of terms by expanding

the multiset into a sum of scaled terms and evaluating each scalar and term for a particular

assignment to variables. This is de�ned inductively as follows for a 2 TERM(
 [ V ),

i 2 TERM(
 [ V )Nat and b1; b2 2 BTERM(
 [ V )

� V al�(i� a) = assign(i)� assign(a)

� V al�(b1 + b2) = V al�(b1) + V al�(b2)

5 Semantic Model for High-level Petri Nets

This clause provides the basic semantic model for High-level nets.

5.1 De�nition

A HLP-net is a structure HLPN = (S; T; C;C; Pre; Post;M0) where

� S is a �nite set of elements called Places

� T is a �nite set of elements called Transitions disjoint from S (S \ T = ;)

� C is a non-empty �nite set of types

� C : S [ T �! C is a function used to type places and determine transition modes

1The terms binding and valuation are also used in this context.
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� Pre; Post : TRANS �! �PLACE are the pre and post mappings with

TRANS = f(t;m) j t 2 T;m 2 C(t)g

PLACE = f(s; g) j s 2 S; g 2 C(s)g

� M0 2 �PLACE is a multiset known as the initial marking of the net

5.2 Marking of HLP-net

A Marking of the HLP-net is a multiset, M 2 �PLACE.

5.3 Enabling of Transition Modes

A �nite multiset of transition modes, T� 2 �TRANS, is enabled at a marking M i�

Pre(T�) � M

where the linear extension of Pre is given by

Pre(T�) =
X

tr2TRANS

mult(tr; T�)Pre(tr)

.

Thus a multiset of transition modes is enabled if there are enough tokens on the input

places to satisfy the linear combination of the pre maps for each transition mode in T�.

5.4 Transition Rule

Given that a multiset of transition modes, T�, is enabled at a marking M , then a step

may occur resulting in a new marking M 0 given by

M 0 =M � Pre(T�) + Post(T�):

where the linear extension of Post is used.

A step is denoted by M [T�iM
0 or M

T�
�!M 0.

6 Concepts Required for the High-level Petri Net

Graph

This clause introduces the concepts that are needed in the de�nition of the High-level

Petri net graph. Readers interested in a tutorial exposition on High-level Petri nets are

referred to Annex B.

17



6.1 High-level Petri Net Graph components

A High-level Petri net graph comprises:

� A Net Graph, consisting of sets of nodes of two di�erent kinds, known as places and

transitions, and arcs connecting places to transitions, and transitions to places.

� Place Types. Non-empty sets. One type is associated with each place.

� Place Marking. A collection of elements (data items) chosen from the place's type

and associated with the place. Repetition of items is possible. The items associated

with places are called tokens.

� Arc Annotations: Arcs are inscribed with expressions which may comprise con-

stants, variables and function images (eg f(x)). The expressions are evaluated by

substituting values for the variables. When an arc's expression is evaluated, it must

result in a collection of items taken from the arc's place's type. The collection may

have repetitions.

� Transition Condition: A boolean expression (eg x < y) inscribing a transition.

� Declarations: comprising de�nitions of Place Types, typing of variables, and func-

tion de�nitions.

Note: A collection of items which allows repetitions is known in mathematics as a multiset.

6.2 Net execution

HLPN-graphs are executable, allowing the ow of tokens around the net to be visualised.

This can illustrate ow of control and ow of data within the same model. Key concepts

governing this execution are enabling of transitions and the occurrence of transitions

de�ned by the Transition Rule.

6.2.1 Enabling

A transition is enabled with respect to a net marking. A net marking comprises the set

of all place markings of the net.

A transition is also enabled in a particular transition mode. A transition mode is an

assignment or substitution of values for the transition's variables, that satis�es the tran-

sition condition (ie the transition condition is true). The transition's variables are all

those variables that occur in the expressions associated with the transition. These are the

transition condition, and the annotations of arcs involving the transition.

Enabling a transition involves the marking of its input places. An input place of a tran-

sition is a place which is connected to the transition by an arc leading from that place to

the transition. An arc that leads from an input place to a transition is called an input

arc of the transition.
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A transition is enabled in a speci�c mode, for a particular net marking. Each input arc

expression is evaluated for the transition mode, resulting in a multiset of tokens of the

same type as that of the input place. If each input place's marking contains at least its

input arc's multiset of tokens (resulting from the evaluation of the input arc's expression

in the speci�c mode), then the transition is enabled in that mode.

An example is given in subclause 6.3.

The input arc's multiset of tokens resulting from the evaluation of the input arc's ex-

pression in a speci�c mode is called the input arc's enabling tokens, with respect to that

mode.

Two transition modes are concurrently enabled for a particular marking, if for the asso-

ciated transitions, each input place's marking contains at least the sum of the enabling

tokens (with respect to both modes) of each input arc associated with that input place.

6.2.2 Transition Rule

Single Transition Mode

Enabled transitions can occur. When a transition occurs, tokens are removed from its

input places, and tokens are added to its output places. An output place of a transition is

a place which is connected to the transition by an arc directed from the transition to the

place. An arc that leads from a transition to a place (an output place of the transition)

is called an output arc of the transition.

If a transition is enabled in a mode, it may occur in that mode. On the occurrence of the

transition in a speci�c mode, the following actions occur atomically:

1. For each input place of the transition: the enabling tokens of the input arc with respect

to that mode are subtracted from the input place's marking, and

2. For each output place of the transition: the multiset of tokens, resulting from the

evaluation of the output arc expression for the mode, is added to the marking of the

output place.

Remark: A place may be both an input place and an output place of the same transition.

Step of Concurrently enabled Transition Modes

Several concurrently enabled transition modes may occur in one step, that is in one atomic

action. The change to the marking of the net when a step occurs is given by the sum of

all the changes that occur for each transition mode, as described above.

An example is given in the next subclause.

6.3 Examples

6.3.1 Simple Example

A simple example of an HLPN graph is given in �gure 1.
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Declarations

A = f1; 2; 3; 4g

B = f3; 4; 5; 7g
<: Z � Z ! Boolean arithmetic `less than'
x : A; y : B

Graph

x < y&%
'$

&%
'$

- -

t1

p1

A

1 + 2(3) p2

B

x y

Figure 1: HLPN-Graph with a Transition Condition

This example comprises two places, named p1 and p2, one transition, t1, and arcs from

p1 to t1, and t1 to p2. The declarations de�ne two types, A and B that are di�erent

subsets of the positive integers. Variable x is of type A, and variable y is of type B. The

transition is inscribed with the boolean expression x < y, where the less than operator

is de�ned in the declarations. Arc (p1; t1) is annotated with the variable x, while arc

(t1; p2) is annotated with y.

Place p1 is typed by A and has an initial marking 1 + 2(3), representing the multiset

M0(p1) = f(1; 1); (2; 0); (3; 2); (4; 0)g. Place p2 is typed by B, and is empty representing

the empty multiset, M0(p2) = ;.

In the initial marking, t1 can be enabled in the following modes

f(1; 3); (1; 4); (1; 5); (1; 7); (3; 4); (3; 5); (3; 7)g

where the �rst element of each pair represents a substitution for x, and the second, a

substitution for y which satis�es x < y.

It can be seen that the multiset of modes, (1; 3)+2(3; 5) are concurrently enabled. Another

example of the concurrent enabling of modes is the multiset (1; 5)+(3; 4) and yet another

is (1; 7) + (3; 6) + (3; 7).

If transition t1 occurred in mode (3,5), then the resultant marking would be:

M(p1) = f(1; 1); (2; 0); (3; 1); (4; 0)g

M(p2) = f(3; 0); (4; 0); (5; 1); (7; 0)g.

Alternatively, if the multiset of modes (1; 3)+2(3; 5) occurred concurrently, the resultant

marking would be
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M(p1) = ;

M(p2) = f(3; 1); (4; 0); (5; 2); (7; 0)g.

6.3.2 Conditionals in Arc Expressions, and Parameters

The example uses a variant of the readers/writers problem to illustrate many of the

features of a HLPN graph including the use of conditionals in arc expressions.

A number (N) of agents (processes) wish to access a shared resource (such as a �le).

Access can be in one of two modes: shared (s), where up to L agents may have access at

the same time (e.g. reading); and exclusive (e), where only one agent may have access

(e.g. writing). No assumptions are made regarding scheduling. An HLPN graph model is

given in �gure 2. This illustrates the use of two parameters, L and N, both of which are

positive integers. This is therefore a parameterized HLPNG, which represents in�nitely

many readers/writers systems. Each instantiation of N and L would produce a HLPNG,

which could then be executed.

It has been assumed that the initial state is when all the agents are waiting to gain access

to the shared resource (with no queueing discipline assumed). In this example, the initial

markings are given in the declaration. Place Wait is marked with all agents; the Control

place contains L ordinary tokens and Access is empty. An agent can obtain access in one of

two modes: if shared (m=s), then a single token is removed from Control (as m=e is false)

when enter occurs in a single mode; if exclusive (m=e), then all L tokens are removed

preventing further access until the resource is released (transition Leave). Shared access

is limited to a maximum of L agents as transition enter is disabled when Control is empty.

Out�x notation has been used for the function Bool ! f0; 1g and this will be used as a

standard convention. It is assumed that integer addition and subtraction and the equality

predicate are primitive and do not need to be de�ned in the Declaration.

7 De�nition of the High-level Petri Net Graph

7.1 Introduction

High-level Petri nets can be de�ned in a number of ways. Clause 5 provides the de�nition

of the basic mathematical semantic model. The basic semantic model is not what is used

by practitioners. This clause provides a formal de�nition for the graphical form of high-

level nets. This approach is taken, as it is the graphical form of HL nets that is most

appropriate for industrial use. We will refer to the graphical form as a High-level Petri

net graph (HLPN-graph). It provides a mathematical syntax for inscribing the graphical

elements. The concepts of marking, enabling and transition rule are also formally de�ned.

7.2 De�nition

A HLPN-graph is a structure

21



Declarations

Set of Agents:A = fa1; : : : ; aNg

Set of Access Modes:M = fs,eg

Control: C = f�g
Positive integer constants: N,L
Variables x:A ; m:M

Function [ ]:Bool ! f0; 1g where

[true] = 1 and [false] = 0

M0(Wait) =A

M0(Control) =L<�>

M0(Access) = ;

Graph
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Wait

A

AccessA�M

Control

C

Enter

Leave

x

x

(x,m)

(x,m)

� + [m=e](L�1)�

� + [m=e](L�1)�

Figure 2: HLPN Graph of Resource Management
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HLPNG = (NG;�; C; AN;M0)

where

� NG = (S; T ;F ) is called a net graph, with

{ S a �nite set of nodes, called Places;

{ T a �nite set of nodes, called Transitions, disjoint from S (S \ T = ;); and

{ F � (S � T ) [ (T � S) a set of arcs, known as the ow relation;

� � = (R;
; V ) is a Natural-Boolean signature with variables. It has a corresponding

�-Algebra, H = (RH ;
H).

� C : S ! RH is a function which types places.

� AN = (A; TC) is a pair of net annotations.

{ A : F ! BTERM(
 [ V ) such that for C(s) = Hr and for all (s; t); (t
0; s) 2 F ,

A(s; t); A(t0; s) 2 BTERM(
 [ V )r. A is a function that annotates arcs with

a multiset of terms of the same sort as the carrier associated with the arc's

place.

{ TC : T ! TERM(
 [ V )Bool is a function that annotates transitions with

Boolean expressions.

� M0 : S !
S
s2S �C(s) such that 8s 2 S, M0(s) 2 �C(s), is the initial marking

function which associates a multiset of tokens of correct type which each place.

In summary, a HLPN-graph consists of a net graph where the arcs are annotated by

multisets of terms. The multiplicities of the multisets are non-negative integer terms.

Transitions are annotated by Boolean terms. The terms are built from a Natural-Boolean

signature which has an associated many-sorted algebra. A typing function associates a

carrier of the many-sorted algebra with each place. A place can only hold tokens of the

same type as the place and hence the initial marking is a multiset over the place's type.

Editor's Note 4: In de�ning HLPN-graphs, we have intentionally associated a type with

each place. This type is a carrier of the chosen many-sorted algebra, H. This allows us

to specify concrete systems where the sets and functions have already been determined.

There is also a need for a more abstract or syntactic form that allows classes of systems

to be speci�ed. In this case, the places become R-sorted, i.e. a sort (rather than a type)

is associated with each place. This leads us to the notion of a HLPN-graph schema which

may be considered for future standardisation.

Editor's Note 5: When generating multisets of terms for the arc inscriptions, we allow

the multiplicities to be natural number terms, so that the value can depend on the values

of variables and operators of other types. This allows there to be conditionals in arc

expressions. There may be other useful extensions.
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7.3 Marking

We de�ne a marking, M , of the HLPN-graph in the same way as the initial marking.

M : S !
S
s2S �C(s) such that for all s 2 S, M(s) 2 �C(s).

7.4 Enabling

A transition t 2 T is enabled in a Marking,M , for a particular assignment to its variables,

�, that satis�es the transition condition, assignbool(TC(t)) = true, known as a mode of

t, i�

8s 2 S V al�(s; t) �M(s)

where for (u; v) 2 (S � T ) [ (T � S),

� u; v = A(u; v), for (u; v) 2 F ,

� u; v = �, for (u; v) =2 F

and V al�(�) = ;, the empty multiset.

7.5 Transition Rule

If t 2 T is enabled in mode �, for marking M , t may occur in mode �. When t occurs in

mode �, the marking of the net is transformed to a new markingM 0, denoted M [t; �iM 0,

according to the following rule:

8s 2 S M 0(s) =M(s)� V al�(s; t) + V al�(t; s)

Editor's Note 6: Do we need to include concurrent enabling and step?

8 Notation for High-level Petri Net Graphs

8.1 General

The graphical form comprises two parts: a Graph which represents the net elements graph-

ically and carries textual inscriptions; and a Declaration, de�ning all the types, variables,

constants and functions that are used to annotate the Graph part. The declaration may

also include the initial marking and the typing function if these cannot be inscribed on

the graph part due to lack of space. There needs to be a visual association between an

inscription and the net element to which it belongs.

The width, colour and patterns of the lines used to draw the graph are not mandated by

this standard.
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8.2 Places

Places are represented by ellipses (often circles). 
Three annotations are associated with a place s:

� the place name;

� the name of the type (C(s)) associated with the place; and

� the initial marking, M0(s).

A mechanism must be provided to remove any ambiguity regarding the association of

these annotations with the correct place.

If the initial marking is empty, then it may be omitted.

8.3 Transitions

A Transition is represented by a rectangle and is annotated by a name and a boolean

expression, the Transition Condition. If the Transition Condition is true (TC(t) = true),

it may be omitted.

For example,

x < y t1

represents a transition with a name t1, and a transition condition, x < y, where both

variables, x and y, and the operator less than, <, are de�ned in the declarations.

A mechanism must be provided to remove any ambiguity regarding the association of

these annotations with the correct transition.

8.4 Arcs

An arc is represented by an arrow: �!

For (s; t) 2 F , an arrow is drawn from place s to transition t and vice versa for (t; s) 2 F .

If (s; t) and (t; s) have the same annotations (s is a side place of t), A(s; t) = A(t; s), then

this may be shown by a single arc with an arrowhead at both ends and annotated by a

single inscription.

Arcs are annotated with multisets of terms. Multisets are represented by the symbolic

sum representation de�ned in the Conventions (clause 4.2.1). In order to distinguish

multiplicities from terms, the convention is adopted that terms are enclosed in parentheses.

8.5 Markings and Tokens

A token is a member of
S
s2S C(s). A Marking of the net may be shown graphically by

annotating a place with its multiset of tokensM(s) using the symbolic sum representation.
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Parentheses should be used to distinguish token multiplicities (Natural numbers) from

token values (e.g. Integers) when required.

9 Semantics of HLPN Graph

The HLPN-graph may be given an interpretation as a HLP-net (see clause 5) in the

following way.

1. Places: S is the set of places in the HLP-net.

2. Transitions: T is the set of transitions in the HLP-net.

3. Set of Types: The set of modes for a transition is determined by the types of the

variables occurring in the surrounding arc annotations restricted by its transition

condition.

Let there be nt free variables associated with the arcs surrounding a transition

t 2 T . Let these have names vr1(t); : : : ; vrnt (t) 2 V . In the �-Algebra, H, for all

i 2 f1; 2; : : : ; ntg, let the carrier corresponding to ri, Hri, be denoted by Gi with

typed variables vi(t) : Gi. For all i, let gi 2 Gi, then

C(t) = f(g1; : : : ; gnt) j TC
0(t)g where

TC 0(t) = �(v1(t); : : : ; vnt(t)):TC(t)(g1; : : : ; gnt).

Tuples which satisfy TC(t) are included in C(t). (The �-expression provides a means

for formally substituting values for the variables in the Transition Condition.)

The types of places are obtained directly from the HLPN graph de�nition. Thus

the set of types is given by C = fC(x)jx 2 S [ Tg.

4. The Typing Function: The typing function restricted to places is de�ned in the

HLPN-graph and C(t) is given above.

5. Pre and Post Maps.

The pre and post maps are given, for all (s; t); (t; s) 2 F , by the following family of

mappings from C(t) into �C(s)

Pre(s; t) = �(v1(t); : : : ; vnt(t)):A(s; t)

Post(s; t) = �(v1(t); : : : ; vnt(t)):A(t; s)

For (s; t) 62 F and 8m 2 C(t), Pre(s; t;m) = ; and for (t; s) 62 F and 8m 2 C(t),

Post(s; t;m) = ;.

Thus for all t 2 T and for all m 2 C(t)

Pre(t;m) = f(s; b) j s 2 S; b 2 Pre(s; t;m)g

Post(t;m) = f(s; b) j s 2 S; b 2 Post(s; t;m)g

6. Initial Marking.

For all s 2 S, M0(s) is as de�ned in the HLPN-graph.
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10 Conformance

Conformance to this International Standard may be at several levels.

10.1 Level 1 Conformance

To claim Level 1 conformance to this International Standard an implementation shall

demonstrate that it has the semantics de�ned in clause 5, by providing a mapping from

the implementation's syntax to the semantic model in a similar way to that de�ned in

clause 9.

10.2 Level 2 Conformance

To claim Level 2 conformance to this International Standard an implementation shall

have satis�ed the requirements of Level 1 conformance and in addition shall provide a

mapping from the implementation's syntax to that of the HLPNG de�ned in clause 7.

10.3 Level 3 Conformance

To claim Level 3 conformance to this International Standard an implementation shall

have satis�ed the requirements of Level 1 conformance and in addition shall adopt the

syntax of the HLPNG de�ned in section 7 and the notational conventions of clause 8.
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Annex A
(informative)

Tutorial

Editor's Note 7: Proposals for further examples in the tutorial have been received

(Jensen, Lilius), by the editor.

A.1 Introduction

High level Petri net graphs (HLPNGs) are used to model discrete event systems. A

discrete event system comprises

� collections of real or abstract objects and

� discrete actions which

- modify or consume objects from some collections and

- create objects in other collections.

The created objects may be related to objects that are consumed. It is assumed that

the collections considered have some permanent identity, irrespective of varying contents.

Take, for example, the collection of coins in someone's purse, or a data base. Generally,

several instances of the same object can be contained in a collection.

A.2 Net Graphs

In HLPNGs, an action is modelled by a transition, which is graphically represented by

a rectangle. A collection is modelled by a place, which is graphically represented by a

circle or an ellipse. Places and transitions are called the nodes of a net graph. Arrows,

called arcs, show which places a transition operates on. Each arc connects a place and a

transition in one direction. Arcs never connect a place with a place nor a transition with

a transition. The graphical representation of a net graph is shown in �gure 3.

a transition an arca place

Figure 3: Graphic conventions.
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A.2.1 Places and tokens

The objects of the system are modelled by (arbitrarily complex) data items called tokens.

Tokens reside in places. The contents (i.e. the tokens) of a place is called the marking of

the place. The tokens form a collection (known in mathematics as a multiset) i.e. several

instances of the same token can reside in the place. A marking of a net consists of the

markings of each place.

Example A in �gure 4 consists of a single place, Alice s purse, which models that Alice's

purse contains two 1-cent, three 10-cent and two 50-cent coins. The set of coins is de�ned

in a textual part of the HLPNG called the Declarations.

The place, Alice s purse, is typed by the set, Coins. This means that only coins (belonging

to Coins) can reside in Alice's purse. In this example, the tokens correspond to coins.

c1

c50 c10
c1

c10 c10

Coins

c50

Alice_s_purse

Coins = fc1, c2, c5, c10, c20, c50g

Figure 4: Example A.

Example A is a net graph. It has neither transitions nor arcs. As no actions are modelled,

nothing ever happens and nothing ever changes in this system.

When a particular instance of a HLPNG is de�ned, each place is de�ned with a special

marking, called the initial marking, because other markings will usually evolve, once a net

is executed. As a place can be marked with a large number of tokens, the initial marking

may be declared textually instead of pictorially. Thus, Alice's present coin collection can

be written as the initial marking,

M0(Alice s purse) = 2c1 + 3c10 + 2c50

and the net graph is then drawn (admittedly in a less illustrative way) without tokens.

A.2.2 Transitions

Example B in �gure 5 models the dripping of a tap. Transition drip can always happen,

any number of times. Example B is also a net, even though it has neither places nor arcs.

A.2.3 Arcs

An arc from a place to a transition indicates that this transition consumes objects from

the place. An arc in the opposite direction indicates that this transition produces tokens
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drip

Figure 5: Example B.

on the place. In �gure 6, Example C, Alice has a smaller coin collection. She may spend

any number of coins at a time.

Alice_s_purse

Coins

x
spend

Coins = fc1, c2, c5, c10, c20, c50g

x : Coins

M0(Alice s purse) = c10 + 2c50

Figure 6: Example C.

Arc annotations determine the kinds and numbers of tokens that are produced or con-

sumed. Here, the annotation \x" indicates that any coin (from Alice's purse) can be

spent. However, it has to be declared in the textual part of Example C that \x" denotes

a variable for coins. Alice could spend: a ten cent coin; a �fty cent coin; a ten cent and

a �fty cent coin; two �fty cent coins; and all her coins in one transaction, that is by the

occurrence of transition spend.

Editor's Note 8: Need to include key concepts of occurrence modes, evaluation of arc

expressions, enabling, concurrency and transition rule in the above discussion ?

A.2.4 The net graph

The size and position of the nodes, as well as the size and shape of the arcs, though often

important for readability, are irrelevant to the mathematical description of a net, i.e. the

places, transitions, and arcs of the net, the net graph. Informally, one might say, the net

has one place, called Alice s purse, one transition, spend, and one arc from Alice s purse

to spend. Formally this can be expressed as:

S=fAlice s purseg

T=fspendg
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F=f(Alice s purse, spend)g

Traditionally, S denotes the set of places (the second most popular name being P), T

denotes the set of transitions, and F denotes the set of arcs. These letters are the initials

of the German words Stelle, Transition, Flussrelation. Each arc is thus described as the

pair consisting of its origin node and its target node.

A.3 Transition conditions

Example D in �gure 7 models that Bob starts with an empty purse and collects 10-cent

coins.

Coins

receiveBob_s_purse

c10

Coins = fc1, c2, c5, c10, c50g

M0(Bob s purse) = ;

Figure 7: Example D.

Example D does not model where the coins may come from. It only shows what happens

to Bob's purse as a consequence of an arbitrary number of occurrences of receive.

In the next example, depicted in �gure 8, Alice is ready to give Bob any of her coins.

Bob, however, accepts only 10c coins from Alice.

CoinsCoins

Bob_s_purse

x = c10

Alice_s_purse donate

c10x

Coins = fc1, c2, c5, c10, c50g

x : Coins

M0(Alice s purse) = c10 + 2c50

M0(Bob s purse) = ;

Figure 8: Example E.

Now we have added a transition condition, requiring that x=c10. The transition donate

can occur only with such variable values as ful�ll the condition. If there are no appropriate,
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i.e. c10, tokens in Alice s purse, then donate cannot occur. In a more realistic variant

of Example D, Bob cannot put arbitrarily many coins into his purse. Example F in �gure

9 limits the number of 10 cent coins that Bob can receive to 200.

noc<200 receive
c10

Coins

Bob_s_purse

No_of_coins

N

noc+1 noc

Declarations

N set of natural numbers

Coins = fc1, c2, c5, c10, c50g

noc : N

< :N�N! Bool usual \less than" predicate

+ :N�N!N arithmetic addition

M0(Bob s purse) = ;

M0(No of coins) = 0

Figure 9: Example F.

A.4 Net Dynamics

Example C can be used to illustrate the modelling of system dynamics in HLPNs. In her

�rst action, Alice can spend any number of her coins. Let her spend a 10-cent coin. Then

in the net, spend occurs, with x having the value c10. This occurrence of spend is denoted

by (spend, f(x,c10)g). This indicates which transition occurs (spend), and to which value

each of the variables, appearing in the arc annotations around the transition, is bound.

In this case only x appears, and is bound to c10.

By the occurrence (spend, f(x,c10)g) a new marking of the net is created: M1(Alice s purse)

= 2c50.
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The new marking is called a reachable marking of Example C. A di�erent marking would

be reached by Alice spending a �fty cent coin. As long as Alice's purse contains coins, she

can spend any of them. In the net, as long as Alice s purse is marked with a non-empty

multiset of tokens, spend can occur with x bound to any one of the tokens in the marking

of Alice s purse. Markings reachable from reachable markings are also called reachable.

The dynamics of Example C, i.e.

� the markings reachable in Example C, as well as

� the transition occurrences performed to reach each one,

are depicted in the reachability graph in �gure 10.

{(Alice_s_purse, c10 + 2c50)}

(spend, {(x, c10)})

{(Alice_s_purse, 2c50)} {(Alice_s_purse, c10 + c50)}

{(Alice_s_purse, c10)}{(Alice_s_purse, c50)}

(spend, {(x, c50)}) (spend, {(x, c10)})

(spend, {(x, c50)})

(spend, {(x, c10)})

{(Alice_s_purse,       )}

(spend, {(x, c50)}) (spend, {(x, c50)

Figure 10: Reachability graph of Example C.

From this diagram, one can read, for example, the following facts about the dynamics of

Example C:

� If Alice spends �rst 10 cents and then 50 cents, or if she does it in the reverse order,

then she will have 50 cents left.

� Alice can perform at most three actions.

� Every sequence of 3 actions ends with an empty purse.

� No sequence of actions (save, trivially, the empty sequence) will allow Alice to restore

the contents of her purse.
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All of this holds, of course, only within the range of actions considered in Example C.

In the reachability graph, set braces f...g are written around the pair parentheses (...)

wherever usually an entire set appears in this position. Generally there are sets of place

markings and sets of variable bindings to be described. It just happens that in our very

simple example these are one-element sets and the f(...)g looks unnecessarily complicated.

The reachability graph for Example D consists of a single in�nite chain, as indicated in

�gure 11. The occurrence (receive, ;) does not mean that Bob receives no coins, but that

no variable is assigned a value.

etc.

(receive,      )

(receive,      )

(receive,      )

{(Bob_s_purse,       )}

{(Bob_s_purse, 2c10)}

{(Bob_s_purse, c10)}

Figure 11: Reachability graph of Example D.

A.5 A larger example: ow control

Two companies, A Co and B Co, reside in di�erent cities. A Co packs and sends big crates

of equal size to B Co, one by one. B Co has a room where the crates are stored. Crates

may be taken from the store-room for processing (for example, distributed to retailers, or

opened and the contents consumed - it does not matter here). This procedure is modelled

in �gure 12.

Crates CratesreceiveCrate processCratesendCrate

Crates = {Cr}

Crates_in_transit Store_room

Cr Cr Cr Cr

Figure 12: Crate procedure.

The people from B Co have a problem. The store-room of B Co can only hold a certain

number, say, MAX, of these crates. In order to avoid being forced either to leave crates

in the street or to rent another store-room, B Co agrees with A Co on a \ow control

protocol".

To implement the protocol, A Co keeps a record of SendingCredits, while B Co keeps a

record of empty \slots" available for placing crates in the store. Any time that there are

empty slots, B Co may give the number of empty slots as sending credits for crates to
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A Co. B Co does this by sending a letter with this number and setting the number of

empty slots to 0. Whenever A Co receives such a letter, it increases SendingCredits by

the number written in it.

Sending a crate, which is only possible if SendingCredits is 1 or more, lowers SendingCredits

by 1, and processing a crate raises the number of empty slots by one.

Initially, the situation is as follows: no crate or letter is in transit; the store-room is empty;

there is no sending credit; and all slots are empty.

This distributed system is modelled by �gure 13.

Crates_in_transit

sc>0

N

n

0
N

sc

new
n

n n+1

n>0

CratesCrates

Letters_in_transit sendLetter Empty-slots

receiveCrate Store_room processCratesendCrate

N

receiveLetterSending
_credits

sc

sc+new

Cr Cr Cr Cr

sc-1

M0(Crates in transit) = Mo(Letters in transit) = Mo(Store room) = ;
M0(SendingCredits) = 0

M0(Empty-slots) = MAX

Declarations

Crates = fCrg

N = f0, 1, 2, . . . g

Z is the set of integers

n, new, sc : N

MAX : N

+ : Z � Z ! Z is arithmetic addition

� : Z � Z ! Z is arithmetic substraction

Figure 13: Example G.

Note that this net models in�nitely many di�erent systems. It is a parameterized HLPNG

with a parameter, MAX, that may take any natural number as a value. Each such

value val, substituted for MAX instantiates Example G to an \ordinary" HLPNG without

parameters,Example G(val).
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Annex B
(informative)

Net Classes

Editor's Note 9:

It is intended to de�ne various classes of nets here. In particular there is interest in de�ning

Petri nets (Place/Transition systems) as a subclass of the HLPNG. Other subclasses may

include Elementary Net systems and other high-level nets.
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Annex C
(informative)

Analysis Techniques

There are a large number of analysis techniques for Petri nets, including reachability

analysis (in many forms), structural analysis and invariants analysis that may be used to

investigate properties of systems modelled by nets. This annex is just to alert readers of

this standard to these possibilities. The Petri net community plan to publish a 3 volume

set in the Lecture Notes in Computer Science series as a handbook on Petri nets in 1998.

This will be based on lectures given at a two week advanced course in Petri nets held in

Germany in 1996. Readers are also referred to the bibliography, for example, the second

volume of Kurt Jensen's book on Coloured Petri Nets.
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